概要
進(jìn)行體內(nèi)巨噬細(xì)胞特異性耗竭的能力仍然是在廣泛的生理背景下揭示巨噬細(xì)胞功能的有效手段。與小鼠模型相比,斑馬魚具有卓越的成像能力,因為它們從單細(xì)胞階段到整個幼蟲發(fā)育過程中都具有光學(xué)透明度。這些品質(zhì)對于體內(nèi)細(xì)胞特異性耗竭變得很重要,因此可以通過顯微鏡實時跟蹤和驗證目標(biāo)細(xì)胞的消除。有多種方法可以去除斑馬魚中的巨噬細(xì)胞,包括遺傳(例如 irf8 敲除)、化學(xué)遺傳(例如硝基還原酶/甲硝唑系統(tǒng))和基于毒素的耗竭(例如使用氯膦酸鹽脂質(zhì)體)。在吞噬脂質(zhì)體后使用含氯膦酸鹽的脂質(zhì)體誘導(dǎo)巨噬細(xì)胞凋亡可有效消耗巨噬細(xì)胞以及測試其吞噬能力。在這里,我們描述了通過靜脈注射補(bǔ)充有熒光葡聚糖偶聯(lián)物的氯膦酸脂質(zhì)體來全身耗竭斑馬魚幼蟲巨噬細(xì)胞的詳細(xì)方案。與熒光葡聚糖共注射可以實時跟蹤巨噬細(xì)胞耗竭,從驗證成功靜脈注射到巨噬細(xì)胞分子攝取及其最終死亡開始。為了驗證巨噬細(xì)胞的高度耗竭,當(dāng)在早期幼蟲階段進(jìn)行氯膦酸鹽注射時,可以通過快速中性紅色活體染料染色來確定腦巨噬細(xì)胞(小膠質(zhì)細(xì)胞)消除的水平。
Experimental workflow for in vivo macrophage-specific depletion by liposomal clodronate in larval zebrafish
背景
巨噬細(xì)胞是先天免疫系統(tǒng)的關(guān)鍵成分,在應(yīng)對感染、無菌炎癥和環(huán)境變化方面發(fā)揮著重要作用。將巨噬細(xì)胞的功能與不同生理環(huán)境中相互作用的細(xì)胞類型的復(fù)雜組合解耦的最有效方法之一是能夠特異性地消除巨噬細(xì)胞并分析表型后果。小鼠的這種耗竭實驗為巨噬細(xì)胞的作用提供了很多見解(Hua et al., 2018; Rosowski, 2020)。然而,我們對巨噬細(xì)胞功能的理解仍然不完整,小鼠模型中的細(xì)胞耗竭實驗難以實時跟蹤和驗證。由于這些原因,斑馬魚幼蟲的光學(xué)透明度和易于操作性通過對靶細(xì)胞和整個完整生物體進(jìn)行實時成像,為體內(nèi)高度可追溯和可處理的細(xì)胞消融提供了明顯的優(yōu)勢。斑馬魚的基因和免疫系統(tǒng)也與人類的基因和免疫系統(tǒng)具有高度的正統(tǒng)性(Yoder et al., 2002; Santoriello et al., 2012; Howe et al., 2013)。此外,斑馬魚的適應(yīng)性免疫系統(tǒng)直到幼年成年階段才在功能上成熟(Lam et al., 2004),這使得斑馬魚幼蟲成為研究獨立于適應(yīng)性免疫貢獻(xiàn)的先天免疫系統(tǒng)的絕佳平臺。
斑馬魚目前可用的巨噬細(xì)胞耗竭方法包括遺傳和化學(xué)遺傳操作,以及基于毒素的耗竭。巨噬細(xì)胞的發(fā)育需要轉(zhuǎn)錄因子Pu.1(基因名稱為spi1b)以及另一種轉(zhuǎn)錄因子Irf8的早期和持續(xù)功能(Li et al., 2011; Shiau et al., 2015; Tenor et al., 2015)。通過基因敲除或嗎啉諾(MO)反義低聚物敲低PU.1或irf8的破壞,為巨噬細(xì)胞耗竭提供了一種可靠的方法,而前者消融骨髓細(xì)胞,后者對巨噬細(xì)胞更具特異性,但也會導(dǎo)致中性粒細(xì)胞數(shù)量的增加(Shiau et al., 2015; Yang et al., 2020)。這些方法不適合時間控制(Rhodes et al., 2005; Li et al., 2011; Shiau et al., 2015; Rosowski, 2020),而氯膦酸鹽介導(dǎo)的基于局部顯微注射的巨噬細(xì)胞耗竭可以實現(xiàn)一定程度的空間和時間指定(Bernut et al., 2014)。
氯膦酸鹽(也稱為二氯亞甲基二膦酸鹽)可以被細(xì)胞代謝以阻斷線粒體呼吸,這是由于形成不可水解的ATP類似物,然后導(dǎo)致細(xì)胞死亡(細(xì)胞凋亡)(Rosowski, 2020)。一旦注射包封在脂質(zhì)體中,氯膦酸鹽很容易被巨噬細(xì)胞攝入和消除,因為它在細(xì)胞內(nèi)積聚(van Rooijen and Hendrikx, 2010)。由于所使用的氯膦酸鹽和脂質(zhì)體磷脂對其他非吞噬細(xì)胞都沒有毒性(van Rooijen and Hendrikx, 2010),這種方法允許特異性消耗已經(jīng)存在的吞噬巨噬細(xì)胞。
作為我們方案設(shè)計的一部分,我們將熒光標(biāo)記的葡聚糖與氯膦酸脂質(zhì)體共同注射,以使我們能夠驗證精確和準(zhǔn)確的注射,并跟蹤氯膦酸對整個幼蟲中巨噬細(xì)胞的影響。為此,在氯膦酸脂質(zhì)體與熒光標(biāo)記的葡聚糖靜脈內(nèi)共注射后,我們目視驗證了這些物質(zhì)成功注射到循環(huán)中,并監(jiān)測了巨噬細(xì)胞對熒光葡聚糖的攝取及其隨時間推移的最終死亡。我們設(shè)計了該方案,包括注射后48小時,以允許氯膦酸誘導(dǎo)巨噬細(xì)胞凋亡的作用實現(xiàn),因為先前在雞和小鼠中的工作表明氯膦酸的功效可能需要幾天時間,具體取決于組織(Kameka et al., 2014; Ponzoni et al., 2018)。我們通過評估腦駐留巨噬細(xì)胞(小膠質(zhì)細(xì)胞)的剩余數(shù)量,證實了氯膦酸鹽介導(dǎo)的巨噬細(xì)胞耗竭在注射后48小時內(nèi)的療效,因為可以通過中性紅色活體染料染色對活幼蟲中的小膠質(zhì)細(xì)胞進(jìn)行快速分析。我們選擇在幼蟲早期階段注射3 dpf(受精后幾天),因為這是在血腦屏障成熟之前(Jeong et al., 2008; O’Brown et al., 2019),當(dāng)時我們發(fā)現(xiàn)我們注射的物質(zhì)很容易到達(dá)包括大腦在內(nèi)的全身巨噬細(xì)胞。使用氯膦酸鹽生效的 48 小時窗口,我們能夠在大多數(shù)注射的斑馬魚幼蟲中實現(xiàn)小膠質(zhì)細(xì)胞的完全消融(Yang et al., 2020)??傮w而言,我們發(fā)現(xiàn)以3dpf的48小時孵育時間靜脈顯微注射氯膦酸脂質(zhì)體可有效消除巨噬細(xì)胞。
參考文獻(xiàn)
1. Bernut, A., Herrmann, J. L., Kissa, K., Dubremetz, J. F., Gaillard, J. L., Lutfalla, G. and Kremer, L. (2014). Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc Natl Acad Sci U S A 111(10): E943-952.
2. Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., Collins, J. E., Humphray, S., McLaren, K. and Matthews, L. et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446): 498-503.
3. Hua, L., Shi, J., Shultz, L. D. and Ren, G. (2018). Genetic models of macrophage depletion. Methods Mol Biol 1784: 243-258.
4. Jeong, J. Y., Kwon, H. B., Ahn, J. C., Kang, D., Kwon, S. H., Park, J. A. and Kim, K. W. (2008). Functional and developmental analysis of the blood-brain barrier in zebrafish. Brain Res Bull 75(5): 619-628.
5. Kameka, A. M., Haddadi, S., Jamaldeen, F. J., Moinul, P., He, X. T., Nawazdeen, F. H., Bonfield, S., Sharif, S., van Rooijen, N. and Abdul-Careem, M. F. (2014). Clodronate treatment significantly depletes macrophages in chickens. Can J Vet Res 78(4): 274-282.
6. Karlsson, J., von Hofsten, J. and Olsson, P. E. (2001). Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol (NY) 3(6): 522-527.
7. Lam, S. H., Chua, H. L., Gong, Z., Lam, T. J. and Sin, Y. M. (2004). Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28(1): 9-28.
8. Li, L., Jin, H., Xu, J., Shi, Y. and Wen, Z. (2011). Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis. Blood 117(4): 1359-1369.
9. O'Brown, N. M., Megason, S. G. and Gu, C. (2019). Suppression of transcytosis regulates zebrafish blood-brain barrier function. Elife 8: e47326.
10. Ponzoni, M., Pastorino, F., Di Paolo, D., Perri, P. and Brignole, C. (2018). Targeting macrophages as a potential therapeutic intervention: impact on inflammatory diseases and cancer. Int J Mol Sci 19(7).
11. Rhodes, J., Hagen, A., Hsu, K., Deng, M., Liu, T. X., Look, A. T. and Kanki, J. P. (2005). Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell 8(1): 97-108.
12. Rosowski, E. E. (2020). Determining macrophage versus neutrophil contributions to innate immunity using larval zebrafish. Dis Model Mech 13(1): dmm041889.
13. Santoriello, C. and Zon, L. I. (2012). Hooked! Modeling human disease in zebrafish. J Clin Invest 122(7): 2337-2343.
14. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P. and Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7): 676-682.
15. Shiau, C. E., Kaufman, Z., Meireles, A. M. and Talbot, W. S. (2015). Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish. PLoS One 10(1): e0117513.
16. Tenor, J. L., Oehlers, S. H., Yang, J. L., Tobin, D. M. and Perfect, J. R. (2015). Live imaging of host-parasite interactions in a zebrafish infection model reveals cryptococcal determinants of virulence and central nervous system invasion. mBio 6(5): e01425-01415.
17. van Rooijen, N. and Hendrikx, E. (2010). Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol Biol 605: 189-203.
18. Yang, L., Jimenez, J. A., Earley, A. M., Hamlin, V., Kwon, V., Dixon, C. T. and Shiau, C. E. (2020). Drainage of inflammatory macromolecules from the brain to periphery targets the liver for macrophage infiltration. Elife 9: e58191.
19. Yoder, J. A., Nielsen, M. E., Amemiya, C. T. and Litman, G. W. (2002). Zebrafish as an immunological model system. Microbes Infect 4(14): 1469-1478.
原始文獻(xiàn)
1. Yang, L., Rojas, A. M. and Shiau, C. E. (2021). Liposomal Clodronate-mediated Macrophage Depletion in the Zebrafish Model. Bio-protocol 11(6): e3951. DOI: 10.21769/BioProtoc.3951.
2. Yang, L., Jimenez, J. A., Earley, A. M., Hamlin, V., Kwon, V., Dixon, C. T. and Shiau, C. E. (2020). Drainage of inflammatory macromolecules from the brain to periphery targets the liver for macrophage infiltration. Elife 9: e58191.
獨家代理
中國大陸地區(qū)
生產(chǎn)廠家
歐洲荷蘭王國
獨家代理
香港臺灣澳門
Copyright ? 2004-2023 靶點科技(北京)有限公司. 版權(quán)所有. 京ICP備18027329號-1